p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C2×C8).10D4, C22⋊C4.1Q8, C23.8(C2×Q8), (C22×C8).93C22, C4.25(C42⋊2C2), M4(2).C4.5C2, C4.10C42.2C2, C4.104(C4.4D4), M4(2)⋊4C4.7C2, C4.C42.11C2, (C22×C4).745C23, C22.41(C22⋊Q8), C42⋊C2.75C22, C42.6C22.2C2, C22.13(C42.C2), C4.123(C22.D4), (C2×M4(2)).241C22, C2.9(C23.83C23), (C2×C4).1387(C2×D4), (C2×C4).788(C4○D4), SmallGroup(128,835)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22⋊C4.Q8
G = < a,b,c,d,e | a2=b2=c4=1, d4=b, e2=bc2d2, cac-1=dad-1=eae-1=ab=ba, bc=cb, bd=db, be=eb, dcd-1=c-1, ece-1=abc-1, ede-1=bd3 >
Subgroups: 128 in 74 conjugacy classes, 36 normal (16 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C4⋊C8, C8.C4, C42⋊C2, C22×C8, C2×M4(2), C2×M4(2), C4.10C42, C4.C42, M4(2)⋊4C4, C42.6C22, M4(2).C4, C22⋊C4.Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C23.83C23, C22⋊C4.Q8
Character table of C22⋊C4.Q8
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ13 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ16 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ17 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | -2i | complex lifted from C4○D4 |
ρ19 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ20 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 2i | complex lifted from C4○D4 |
ρ21 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 2ζ85 | 2ζ83 | 2ζ8 | 2ζ87 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 2ζ8 | 2ζ87 | 2ζ85 | 2ζ83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 2ζ83 | 2ζ85 | 2ζ87 | 2ζ8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 2ζ87 | 2ζ8 | 2ζ83 | 2ζ85 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 5)(3 7)(9 13)(11 15)(17 21)(19 23)(25 29)(27 31)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 32 5 28)(2 29 6 25)(3 26 7 30)(4 31 8 27)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 12 3 10 5 16 7 14)(2 11 4 9 6 15 8 13)(17 28 23 30 21 32 19 26)(18 27 24 29 22 31 20 25)
G:=sub<Sym(32)| (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,32,5,28)(2,29,6,25)(3,26,7,30)(4,31,8,27)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,12,3,10,5,16,7,14)(2,11,4,9,6,15,8,13)(17,28,23,30,21,32,19,26)(18,27,24,29,22,31,20,25)>;
G:=Group( (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,32,5,28)(2,29,6,25)(3,26,7,30)(4,31,8,27)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,12,3,10,5,16,7,14)(2,11,4,9,6,15,8,13)(17,28,23,30,21,32,19,26)(18,27,24,29,22,31,20,25) );
G=PermutationGroup([[(1,5),(3,7),(9,13),(11,15),(17,21),(19,23),(25,29),(27,31)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,32,5,28),(2,29,6,25),(3,26,7,30),(4,31,8,27),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,12,3,10,5,16,7,14),(2,11,4,9,6,15,8,13),(17,28,23,30,21,32,19,26),(18,27,24,29,22,31,20,25)]])
Matrix representation of C22⋊C4.Q8 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
6 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
12 | 2 | 4 | 0 |
10 | 0 | 0 | 1 |
14 | 11 | 5 | 8 |
16 | 15 | 11 | 0 |
11 | 16 | 15 | 0 |
14 | 0 | 0 | 15 |
13 | 3 | 6 | 1 |
9 | 8 | 3 | 0 |
0 | 1 | 0 | 0 |
13 | 0 | 0 | 0 |
13 | 14 | 0 | 13 |
3 | 16 | 1 | 0 |
G:=sub<GL(4,GF(17))| [16,0,6,0,0,1,0,0,0,0,1,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[12,10,14,16,2,0,11,15,4,0,5,11,0,1,8,0],[11,14,13,9,16,0,3,8,15,0,6,3,0,15,1,0],[0,13,13,3,1,0,14,16,0,0,0,1,0,0,13,0] >;
C22⋊C4.Q8 in GAP, Magma, Sage, TeX
C_2^2\rtimes C_4.Q_8
% in TeX
G:=Group("C2^2:C4.Q8");
// GroupNames label
G:=SmallGroup(128,835);
// by ID
G=gap.SmallGroup(128,835);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,56,141,176,422,387,58,1018,248,1411,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=1,d^4=b,e^2=b*c^2*d^2,c*a*c^-1=d*a*d^-1=e*a*e^-1=a*b=b*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,e*c*e^-1=a*b*c^-1,e*d*e^-1=b*d^3>;
// generators/relations
Export